NUMERICAL ANALYSIS OF THE DEVELOPMENT OF A SYSTEM
OF JETS IN THE REGION OF MIXING OF OPPOSITELY
TWISTED ANNULAR FLOWS

A. L. Dorfman UDC 532.516

Results are presented from a study of the flow structure and mass transfer in a
combustion chamber employing the microflame diffusion principle of combustion in
a twisted flow. The study was conducted with an isothermal computational model.

The interaction of oppositely twisted coaxial jets separated by an annular gap was exam-
ined in [1]. It was shown on the basis of numerical solution of turbulent flow equations that
the intensity of the recirculation zone beyond the annular gap monotonically decreases with
an increase in twist. The scheme of combustion examined here provides for the injection of
single-pass jets of a gaseous fuel into the recirculation zone beyond the annular gap separat-
ing two oppositely twisted air flows. Here under actual conditions increasing the twist has
a positive effect, despite the above-noted decrease in the intensity of the recirculation
zone. Increasing the twist stabilizes the combustion process to a certain degree. Since the
effectiveness of the diffusion method of combustion is determined primarily by the intensity
of heat and mass exchange between the gaseous fuel and air and the combustion products, it is
interesting to study the structure of the flow formed as a result of the interaction of a sys-
tem of single-pass jets and coaxial, oppositely twisted flows and its effect on heat exchange.
Although some progress has by now been made in the numerical modeling of flows with combustion
{2, 3], this study is limited to the case of isothermal flow. This is primarily because we
can expect the aerodynamic structure of the flow to be dynamically similar under isothermal
and nonisothermal conditions. Thus, a study conducted in an isothermal approximation can re-
veal characteristic flow features responsible for intensifying heat and mass transfer and can
make it possible to evaluate the effect of different factors on them. Since detailed experi-
mental study of the structure of a three-dimensional flow with combustion in a combustion
chamber is difficult due to a number of technical factors, the data obtained in numerical ex-
periments is important for understanding hydrodynamic and heat and mass transfer processes oc-
curring in an actual combustion chamber.

Figure la shows the flow examined. An annular surface 1 dividing oppositely twisted
flows emanating from swirlers 2 is located at the inlet of an annular channel of height H and
mean radius R. A system of single-pass jets is directed from holes of radius r located about
the periphery of a surface 1 of radius R with a spacing s between the holes. The surface 1 is
located symmetrically heightwise with respect to the annular channel and is characterized by
a height h. We are examining the case of small ratios H/R and s/R, which, considering the pe-
riodicity of the flow, permit approximation of an annular channel on a period s by a channel
formed by two parallel planes. We may further reliably assume that the flow on the period s
has symmetrical rotation through 180° relative to the point of discharge of the jet. All this
makes it possible to limit ourselves in the numerical analysis to a region in the form of a
parallelepiped of height H/2 and width s. The region begins with the surface 1 and extends
downstream over a distance xﬁ = 4H,

The system of equations of the mean turbulent flow
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is closed by introducing the scalar turbulent viscosity e, connecting the components of the
turbulent-stress tensor with the components of the mean-flow strain-rate tensor. Here, in
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the region of the flow occupied by the jet, turbulent viscosity is assumed to be constant and
equal to € = cU.r, by analogy with a circular turbulent jet [4] (c = 0.01-0.03). To determine
turbulent viscosity outside the jet, we used the mixing length formula
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with the distribution of mixing length L from [1], which earlier made it possible to obtain
satisfactory agreement between theoretical and experimental distributions of velocity for axi-
symmetrical flow without jets [1]. The parameters in the expression for mixing length {1] and
the value of ¢ agreed so as to ensure agreement of € on the boundaries of the isclated charac-
teristic flow regions., Here the region to which the values belonged was determined in a nu-
merical calculation on the basis of analysis of the velocity field.

The boundary conditions were as follows:
Uy, %2> W2
vt 0, 2, ¥)=10, B2, o>,
Uy, *<C )2, o<1,
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Together with calculation of the characteristics of motion, we studied mass transfer by solv=-

ing the transport equation for the substance v:

w
o
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The coefficient of turbulent diffusion, connecting qj with Sy/axj,‘was expressed through the

eddy viscosity with a diffusional Prandtl number equal to 0.7. For boundary conditions we
used homogeneous Neumann conditions on impermeable surfaces: vy = G at the swirler outlet,
¥ = yc at the mouth of the jet, and 3/8x(3y/9x") = 0 at the downstream boundary.

The flow and mass transfer patterns obtained from the calculations were compared with da-
ta from visual observations and measurements of the flow on an experimental stand. The scalar
substance was modeled in the experiment by slight initial heating of the jet relative to the
main flow, with subsequent temperature measurement.

The problem posed was solved in two stages. In the first stage we found the solution
corresponding to steady-state flow in the investigated region. We then solved the transport
equation for the scalar substance until we reached the corresponding value, here using the
velocity field that was found. We increased the accuracy of the finite-difference solution
by using the coordinate transformation fl = gl(xl) in the initial system of equatlons so that,
in selecting constants throughout the region of integration of the grid intervals AE*, we re-
duced the intervals Ax* near the solid boundaries and in the region occupied by the jet. This
transformation has the form

g = By sgn (¢ —x0) In(1 + &' |5 — x5 ),

where
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To construct the numerical solution we used a uniform three-dimensional grid subdividing
the investigated region into a system of elemental cells in the form of a parallelepiped with
sides AEl. The scalar variables p and y were determined in the center of the cells, identi-
fied by indices (m, 7, k). The components of the velocity vector v were determined in the
center of the corresponding sides of the cell, normal to &L (see Fig. 1b). Henceforth, the
subscripts with the variables will ‘indicate their spatial coordinates, i.e., @Umlj)sa@(gg,gﬁ
&), &= —/2)A¥ , with a half-integral value of the subscript corresponding to a point on
the side of the cell. The superscript will denote the number of the time layer or the number
of the step in the finite-difference algorithm.

We solved the motion equations using a finite-difference algorithm with a physical divi-
sion [5-8], characterized by the fact that the transition from known values of the sought
functions on the n-th time layer (t = nAt) to the values on the n+l-st time layer consists of
two steps: in the first step we calculate preliminary values of the velocity vector compo-
nents with allowance for convective accelerations and turbulent flow and without allowance for
the continuity equation. The final values of the velocity vector components are obtained in
the second step by combining the preliminary values obtained in the first step and terms ac-
counting for the pressure gradient. Here the pressure values should ensure satisfaction of
the continuity equation. The first step itself is broken down into three substeps. The first
two substeps make allowance for the convective terms of the motion equations by means of an
explicit predictor—corrector scheme, this being a modification of McCormick's scheme [9]. The
modification consists of allowing for the local orientation of the flow in recording the fi-
nite~difference relations, as well as the somewhat different form of the finite-difference
record of the flows through the side of the theoretical cell. This is due to the location of
the grid functions relative to the latter. The terms accounting for turbulent friction are
included in the scheme in the third substep by means of representation through the grid func-
tions from the n-th time layer. The grid variables not determined at some point are found at
this point by interpolation using the values at the adjacent points. For example, for v! the
first step of the finite-difference algorithm has the form (the subscript (m + 1/2, I, k) has
been omitted from v').
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The values of ol are determined, on the one hand, by the algorithm by McCormick's method [9]
(alternation of the direction of the differences on the predictor and corrector, which pro-
vides a second-order approximation) and, on the other hand, by the local orientation of the

flow: at the predictor substep ®i::6(UZ:+L 'M)’ while at the corrector substep 0 = 1 —
2"

G(U““)I ) , where §(z) is an asymmetric unit function equal to 1 with negative z, and O in
(m4-—- 1.k
2 ]
the opposite case. To ensure sequential satisfaction of the predictor and corrector near the
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Fig. 1. Flow diagram (a) and theoretical finite-difference
cell (b).

boundaries of the region of integration and allow for the boundary conditions, we can deter-

mine 61 in the opposite manner: 1—8(©™ ; ) on the predictor and 8" ) on the cor-

(M4, 1, B) (m+%Jm
rector. Thanks to allowing for the local orientation of the flow with certain relations be-
tween the spatial and time intervals (stability conditions), the region of dependence of the
difference scheme will always contain the region of dependence of the differential equations.

We similarly formulate the first step of the finite-difference algorithm for Uiﬂ i

and ¢° ek The second step is represented in the form
(m, L R}
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Use of a finite~difference representation of the continuity equation

303(n+l) — O
(m, i k=)

L(n+1) L2 2,2 (n+1) _ 33
o1 1 a2 20 —_y Iy
Vintm V Umung,gm " Vimm V (mJ+%?k) ~Vim, 1o V

makes it possible, by insertion of the relations of the second step into it, to obtain a Pois-
son difference equation for pressure. The boundary conditiéons here are obtained on the basis
of joint inspection of the difference representations of the continuity equation, the boundary
conditions of the problem, and the conditions of conservation of total flow rate through the
region of integration. TFor the problem being examined we have: Neumann difference conditions
x' =0, x* = xy, x* = H/2, pericdicity conditions for the boundaries x* = 0 and x* = s, and
the condition of symmetry of rotation relative to a straight line (x? = s/2; x® = Q) for the
boundary x° = 0. The equation for pressure was solved on each time layer by the method of op-
timum upper relaxation. The value of the relaxation coefficient was determined by the number
of grid nodes and the parameters of the a; coordinate transformation and was found to lie
within 1.3-1.85. The number of iterations was determined by the accuracy of the satisfaction
of the continuity equation, which was systematically evaluated over a specified number of time
intervals by calculating in each elemental cell the ratio of the loss of mass of liquid to the
total flow through the cell. This value was maintained at 107%-107>., It should be noted
that, in view of the conservativeness of the finite-difference algorithm, the total loss of
mass is equal to zero to within the rounding error.

As the initial conditions we used either the solution of the axisymmetric problem in [1]
or data from calculations with approximately the same parameters, making it possible to sig-
nificantly shorten the time until we reached the steady state, It was determined from the
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Fig. 2. Flow structure with @ = 60°, ¥ = 0.3, » = 4, ¢ = 0.83,
Projections of the velocity vectors on the planes: a) X% = 0; b)
0.0625; c¢) 0.125; d) X' = 0.1; e) lines of equal values of the di-
mentionless longitudinal coordinate v'/Uo in the section X' = 0.1;
1) 2.0; 2) 1.0; 3) 0; 4) —0.2; 5) —0.3.

changes in the flow parameters at characteristic points. The time interval was determined on

the basis of local stability conditions obtained from spectral analysis in a linear approxima-
tion

3 2

A< | B e B

fe==1
The algorithm is of the second order of approximation with respect to the spatial variables.

The transport equation was solved using the above-described modified McCormick scheme for
the convective terms and representation of the diffusion terms by an explicit scheme. A cor-
rection procedure was used to suppress oscillations of y occurring in the initial intervals
in regions with large gradients of y and leading to the appearance of negative values of low
absolute magnitude.

The number of grid nodes for each coordinate and the transform parameters were chosen on
the basis of analysis of the effect of scheme factors on flow characteristics (see [1]). A
typical finite-difference grid consisted of 8000 nodes. Calculation of the velocity field
took 30-60 min, while calculation of mass exchange took 3~10 min of the processor time of the
ES-1060 computer.

The following main factors affecting flow characteristics and mass exchange were singled
out: the angle of initial twist of the flow from the swirlers Q@ = arctan(n), n = V¢/Uo, the
degree of blockage of the annular chamnel ¥ = h/H, the relative discharge velocity of the jet
% = Uo/Us, and the relative distance (spacing) between the jets ¢ = s/h. The numerical study
was conducted in the following parameter ranges: 0° < Q< 75°, 0.2 < ¥ < 0.5, 0 < x €12,
2.5<€ g <£1.5, and r/H = 0.025.

The flow structure can be judged from the typical flow pattern shown in Fig., 2. The zone
of longitudinal recirculation beyond the annular surface has a complex three-dimensional
shape. The character of the dependence of the relative length of this zone (ratio of the max-~
imum value of the longitudinal coordinate x' with zero velocity v to the height of the annu-
lar surface) on the parameters { and ¥ turned out to be the same as in the case of axisymmet-
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Fig., 3. Dependence of intensity of transverse circulation
on Q and ¥ with » =4, o = 0.83; 1) Q = 30°; 2) 45°; 3) 60°.

Fig. 4. Distribution of the scalar substance along the jet
axis with ¥ = 0,427 and ¢ = 1.5: 1) 0 =0°, «=2; 2) Q=
30°, w=1.3; 3) @ = 45°, » = 0.8; points indicate experi-
mental data.

ric flow without jets [1]: an increase in Q and/or a decrease in ¥ leads to a monotonic de-
crease in its length. An increase in x from zero to roughly four causes a linear decrease in
the relative length of the zone of longitudinal recirculation by 10-15% compared to axisymmet-—
ric flow without the jet (% = 0) with the same parameters { and ¥. A further increase in x
has a slight adverse effect. An increase in o reduces the dependence of the relative length
of the longitudinal recirculation zone on the parameter =x.

A sigpificant feature of the above flow is the formation of circulation in planes perpen-
dicular to the main flow direction (see Fig. 2d). Its intensity can be approximately charac~
terized by the absolute value of the dimensionless velocity v®/U° of flow through the boundary
x* = 0 (henceforth w,). The calculations showed that the greater the initial twisting of the
flow from the swirlers, the greater the intensity of the transverse circulation. The effect
of the parameter Y on w, is characterized by the presence of a maximum of w, in the range ¥ =
0.3-0.4 (Fig. 3). The effect of » on the intensity of the transverse circulation is substan-
tial: when % = 0, no transverse circulation is seen; an increase in % increases W For the
investigated range of flow parameters, the maximum value of w, is reached at »=~ 10. A fur-
ther increase in % has no significant effect on w,. It should be noted that the value of Wy
at « = 4 is usually 60-807% of the value of w, at » = 10. The maximum w, is reached at ¢ =
1.3-1.4, With motion of this value in either direction, w, decreases.

The characteristic rate of mass exchange of the jet system with the main flow from the
swirlers can be the rate of decrease in the concentration y downstream along the jet axis.
The calculations revealed an exponential character to this decrease and showed that it is af-
fected mainly by the degree of initial twist of the flow from the swirlers n and the parame-
ter x. An increase in the degree of blockage of the channel ¥ leads to some increase in the
counterflow rate in the longitudinal recirculation zone, which in turn decreases the concen-
tration range of the jet. However, this effect is significant only at low values of %  The
effect of o is also manifest at lew values of %, but to a lesser degree than in the case of
the effect of ¥, The calculated data for the concentration v on the jet axis are satisfacto-
rily described by the relation

/7, = exp {._ 6.75 (n -+ 0,74) (w_ ol 1)_’“[;_} ,
bia

which is valid for the investigated ranges of the flow parameters.

The data obtained on the flow structure and mass exchange characteristics are supported
by experimental data. In particular, the results of visual observations indicate the exis-
tence of intensive transverse circulation. Figure 4 shows calculated and experimental data
on the change in the concentration of the scalar substance along the jet axis. The agreement
is satisfactory.
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In turning from the model problem to actual conditions, it should be emphasized that,
thanks to the presence of transverse circulation, heat and the active centers are rapidly
transferred from the region of longitudinal recirculation to the combustion front at the
boundary of the jet, which ensures normal conditions for flame stabilization. On the other
hand, intensive transverse mixing, together with a reduction in the length of the longitudinal
recirculation zone, leads to rapid equalization of hydrodynamic and temperature fields along
the flow.

NOTATION

xi, cartesian coordinates; vJ, component of the velocity vector in the 3 direction; p,
ratio of pressure to constant demsity; T'J, components of the turbulent stress tensor; t,
time; H, R, height and mean radius of annular channel; h, height of annular surface; s, spac-
ing between jets; r, initial radius of jet; €, scalar eddy viscosity; L, mixing length, Y,
scalar substance; y,, value of y at mouth of jet; Uo, value of longltudlnal velocity v' at
swirler outlet; Vo, value of transverse velocity v? at swirler outlet; Q, angle of initial
twist of flow from swirlers; n, degree of initial twist of flow from swirlers; ¥, degree of
blockage of annular channel; U., jet discharge velocity; x, relative jet discharge velocity;
g, relative spacing between jets; w,, intensity of transverse circulation; & 3, Kronecker del-
ta; 51, transformed coordlnates, ul, coordinate transformation parameter; Agl, grid interval;
At, time interval; vi = gi/agi; a1 = vi Ag; El, dlfference operator of displacement along co-

ordinate g1 by pAEl I, identity operator; u* = /2 ~ _1/2, vi=1-~ EEI; Al = Ei - 1; 8,
asymmetrical unit function; ¥ = Y/Yca T, flow temperature, Ty, flow temperature at sw1rler out-
let; T, temperature at jet mouth; © = (T — T,)/(T, — T,); &' = xi/H.

LITERATURE CITED

1. A. L. Dorfman and V. A. Maev, '"Numerical study of the interaction of isothermal opposite-
ly twisted flows in an annular channel,'" Inzh.-Fiz. Zh., 41, No. &4, 674-677 (1981). '
F. C. Lockwood, '"The modeling of turbulent, premixed, and “diffusion combustion in the
computation of engineering flows," Combust. Flame, 29, No. 2, 111-122 (1977).
3. M. Abou Ellail, A. D. Gosman, and F. C. Lockwood, ”Description and validation of three-
dimensional procedure for combustion chamber flows," J. Energy, 2, No. 2, 71-80 (1978).
J. O. Hinze, Turbulence, McGraw-Hill (1975).
5. 0. M. Belotserkovskii, V. A. Gushchin, and V. V. Shchennikov, '"Division method applied
to the solution of problems of the dynamics of a viscous fluid," Zh. Vychisl. Mat. Mat.
Fiz., 15, No. 1, 197-207 (1975).

o
.

B~

6. F. H. Harlow and C. W. Hirt, "Recent extensions to Eulerian methods for numerical fluid
dynamics,”" Zh. Vychisl. Mat. Mat. Fiz., No. 3, 656-672 (1972).
7. A, L. Dorfman, "Explicit division scheme with application to a problem of the spatial in-

teraction of a jet of a viscous incompressible liquid in a channel," Chislennye Metody
Mekhaniki Sploshnoi Sredy (Novosibirsk), 9, No. 4, 57-67 (1978).

8, A. L. Dorfman, "Solution of equations of the dynamics of a viscous fluid in a curvilinear
nonorthogonal coordinate system,” Chislennye Metody Mekhaniki Sploshnoi Sredy, 11, No. 6,
79-89 (1980).

9. R. W. McCormick, "Numerical solution of the interaction of a shock wave with a laminar
boundary layer," Lect. Notes Phys., 8, 151-163 (1971).

642



